Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.497
Filter
1.
Kardiologiia ; 64(4): 45-53, 2024 Apr 30.
Article in Russian, English | MEDLINE | ID: mdl-38742515

ABSTRACT

AIM: To compare the changes in serum concentrations of matrix metalloproteinases (MMPs) and their tissue inhibitor (TIMP) to the dynamics of blood pressure (BP) and parameters of left ventricular hypertrophy (LVH) 6 months after renal denervation (RD) in patients with resistant arterial hypertension (RAH) and complicated coronary atherosclerosis. MATERIAL AND METHODS: In 22 RAH patients with complicated coronary atherosclerosis (revascularization and/or history of myocardial infarction (MI)), 24-hour BP monitoring, echocardiography, and measurement of blood MMPs and TIMP were performed at baseline and six months after RD. The comparison group consisted of 48 RAH patients without a history of coronary revascularization or MI. RESULTS: In 6 months after RD, BP was decreased comparably in both groups. In the group of complicated atherosclerosis, there were no significant changes in profibrotic markers or LVH parameters. Thus, at baseline and after 6 months, the values of the studied indicators were the following: left ventricular myocardial mass (LVMM) 233.1±48.1 and 243.0±52.0 g, LVMM index 60.6±14.5 and 62.8±10 .9 g/m2.7, proMMP-1 4.9 [2.1; 7.7] and 3.6 [2.0; 9.4]  ng/ml, MMP-2 290.4 [233.1; 352.5] and 352.2 [277.4; 402.9] ng/ml, MMP-9 220.6 [126.9; 476.7] and 263.5 [82.9; 726.2] ng/ml, TIMP-1 395.7 [124.7; 591.4] and 424.2 [118.2; 572.0] ng/ml, respectively. In the comparison group, on the contrary, there was a significant decrease in LVMM from 273.6±83.3 g to 254.1±70.4 g, LVMM index from 67.1±12.3 to 64.0±14.4 g/m2.7, proMMP-1 from 7.2 [3.6; 11.7] to 5.9 [3.5; 10.9] ng/ml, MMP-2 from 328.9 [257.1; 378.1] to 272.8 [230.2; 343.2] ng/ml, MMP-9 from 277.9 [137.0; 524.0] to 85.5 [34.2; 225.9] ng/ml, and the MMP-9/TIMP-1 ratio from 0.80 [0.31; 1.30] to 0.24 [0.07; 0.76]. The BP dynamics in this group was inversely correlated with MMP-2 at 6 months (r=-0.38), and the MMP-9/TIMP-1 ratio was correlated with LVMM and the LVMM index at baseline (r=0.39 and r=0.39) and at 6 months (r=0.37 and r=0.32). The change in TIMP-1 from 543.9 [277.5; 674.1] to 469.8 [289.7; 643.6] ng/ml was not significant (p=0.060). CONCLUSION: In RAH patients with complicated coronary atherosclerosis, the dynamics of profibrotic biomarkers and LVH parameters after RD was absent despite the pronounced antihypertensive effect, probably due to the low reversibility of cardiovascular remodeling processes or more complex regulatory mechanisms of the MMP system.


Subject(s)
Biomarkers , Hypertension , Hypertrophy, Left Ventricular , Humans , Male , Female , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/etiology , Middle Aged , Hypertension/physiopathology , Hypertension/surgery , Hypertension/complications , Biomarkers/blood , Coronary Artery Disease/surgery , Coronary Artery Disease/complications , Echocardiography/methods , Aged , Kidney/innervation , Blood Pressure/physiology , Matrix Metalloproteinases/blood , Sympathectomy/methods
2.
Kardiologiia ; 64(4): 14-21, 2024 Apr 30.
Article in English, English | MEDLINE | ID: mdl-38742511

ABSTRACT

AIM: To assess the levels of matrix metalloproteinases (MMP), vascular endothelial growth factor (VEGF), and miRNA-34a expression in patients with ischemic heart disease (IHD) and obstructive and nonobstructive coronary artery (CA) disease. MATERIAL AND METHODS: This cross-sectional observational study included 64 patients with IHD (diagnosis verified by coronary angiography or multislice computed tomography coronary angiography), of which 33 (51.6%) were men aged 64.9±8.1 years. 20 patients had nonobstructive CA disease (stenosis <50%), and 44 had hemodynamically significant stenoses. The control group consisted of 30 healthy volunteers. MMP-1, -9, -13, and -14, miRNA-34a, and VEGF were measured in all patients. RESULTS: The concentration of MMP-1 was significantly higher in patients with ischemia and nonobstructive CA disease (INOCAD) (p=0.016), and the concentration of MMP-9 was the highest in the group with obstructive CA disease (p<0.001). The concentrations of MMP-13 and MMP-14 did not differ significantly between the groups. The highest VEGF concentrations were observed in the INOCAD group (p<0.001). The expression of miRNA-34a significantly differed between the IHD groups with different types of CA disease and controls (p <0.001). Patients with hemodynamically significant stenosis showed moderate relationships between the concentrations of MMP-14 and VEGF (ρ=0.418; p=0.024), as well as between VEGF and miRNA-34a (ρ=0.425; p=0.022). Patients with INOCAD had a significant negative correlation between the concentrations of MMP-13 and VEGF (ρ= -0.659; p=0.003). Correlation analysis showed in all IHD patients a moderate relationship of the concentrations of MMP-1 and MMP-14 with VEGF (ρ=0.449; p=0.002 and p=0.341; p=0.019, respectively). According to ROC analysis, a MMP-9 concentration above 4.83 ng/ml can be a predictor for the presence of hemodynamically significant CA obstruction in IHD patients; a VEGF concentration higher than 27.23 pg/ml suggests the absence of hemodynamically significant CA stenosis. CONCLUSION: IHD patients with INOCAD had the greatest increase in MMP-1, whereas patients with obstructive CA disease had the highest level of MMP-9. According to our data, concentrations of MMP-9 and VEGF can be used to predict the degree of CA obstruction. The expression of miRNA-34a was significantly higher in IHD patients with INOCAD and CA obstruction than in the control group, which suggested a miRNA-34a contribution to the development and progression of coronary atherosclerosis. In the future, it may be possible to use this miRNA as a diagnostic marker for IHD.


Subject(s)
Coronary Angiography , MicroRNAs , Vascular Endothelial Growth Factor A , Humans , Male , Middle Aged , Female , Vascular Endothelial Growth Factor A/genetics , MicroRNAs/genetics , Cross-Sectional Studies , Aged , Coronary Artery Disease/genetics , Coronary Artery Disease/physiopathology , Coronary Artery Disease/diagnosis , Matrix Metalloproteinases/genetics , Biomarkers , Coronary Stenosis/genetics , Coronary Stenosis/physiopathology , Coronary Vessels/diagnostic imaging , Coronary Vessels/physiopathology
3.
Braz Oral Res ; 38: e034, 2024.
Article in English | MEDLINE | ID: mdl-38747821

ABSTRACT

The aim of this study was to investigate the effect of acid challenge on the activation of matrix metalloproteinases (MMPs) in the Dentinoenamel junction of primary and permanent teeth submitted to radiotherapy. For this purpose, a total of 178 dental fragments obtained from molars were used, and randomly divided into 2 groups (primary and permanent teeth) / 4 experimental subgroups (irradiated and non-irradiated, demineralized and non-demineralized). The fragments were exposed to radiation, with a dose fraction of 2 Gy, for 5 consecutive days, until a total dose of 60 Gy was reached, with a total of 30 cycles, for 6 weeks. To determine the activity of MMPs on the dentinoenamel junction (DEJ), in situ zymography assays on 0.6mm dental fragments were performed. To assess whether MMP activity would be impacted by an acidic environment, the fragments were placed in a demineralizing solution (pH of 4.8). The finding was that irradiation activated MMPs in DEJ and these effects were more evident in permanent when compared with primary teeth. When the effect of an acid challenge on MMPs activity was investigated, demineralization was observed not to increase MMPs activity in non-irradiated teeth, but it did increase MMPs activity in irradiated teeth. In conclusion, an acid challenge was found to exacerbate activation of MMPs in DEJ of permanent teeth submitted to irradiation, but not in primary teeth.


Subject(s)
Matrix Metalloproteinases , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/radiation effects , Matrix Metalloproteinases/analysis , Humans , Time Factors , Tooth, Deciduous/radiation effects , Tooth, Deciduous/drug effects , Dentin/radiation effects , Dentin/drug effects , Dentin/enzymology , Dentition, Permanent , Random Allocation , Hydrogen-Ion Concentration , Tooth Demineralization , Statistics, Nonparametric , Analysis of Variance , Reference Values , Enzyme Activation/radiation effects , Enzyme Activation/drug effects
4.
Mol Biol Rep ; 51(1): 624, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38710963

ABSTRACT

BACKGROUND: Thyroid hormones are primarily responsible for the brain development in perinatal mammals. However, this process can be inhibited by external factors such as environmental chemicals. Perinatal mammals are viviparous, which makes direct fetal examination difficult. METHODS: We used metamorphic amphibians, which exhibit many similarities to perinatal mammals, as an experimental system. Therefore, using metamorphic amphibians, we characterized the gene expression of matrix metalloproteinases, which play an important role in brain development. RESULTS: The expression of many matrix metalloproteinases (mmps) was characteristically induced during metamorphosis. We also found that the expression of many mmps was induced by T3 and markedly inhibited by hydroxylated polychlorinated biphenyls (PCBs). CONCLUSION: Overall, our findings suggest that hydroxylated PCBs disrupt normal brain development by disturbing the gene expression of mmps.


Subject(s)
Brain , Matrix Metalloproteinases , Metamorphosis, Biological , Polychlorinated Biphenyls , Thyroid Hormones , Xenopus laevis , Animals , Brain/metabolism , Brain/drug effects , Brain/growth & development , Xenopus laevis/metabolism , Xenopus laevis/genetics , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/genetics , Polychlorinated Biphenyls/toxicity , Metamorphosis, Biological/drug effects , Metamorphosis, Biological/genetics , Thyroid Hormones/metabolism , Gene Expression Regulation, Developmental/drug effects , Hydroxylation
5.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 739-747, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38708508

ABSTRACT

OBJECTIVE: To explore the inhibitory effect of Sidaxue, a traditional Miao herbal medicine formula, on articular bone and cartilage destruction and synovial neovascularization in rats with collagen-induced arthritis (CIA). METHODS: In a SD rat model of CIA, we tested the effects of daily gavage of Sidaxue at low, moderate and high doses (10, 20, and 40 g/kg, respectively) for 21 days, with Tripterygium glycosides (GTW) as the positive control, on swelling in the hind limb plantar regions by arthritis index scoring. Pathologies in joint synovial membrane of the rats were observed with HE staining, and serum TNF-α and IL-1ß levels were detected with ELISA. The expressions of NF-κB p65, matrix metalloproteinase 1 (MMP1), MMP2 and MMP9 at the mRNA and protein levels in the synovial tissues were detected using real-time PCR and Western blotting. Network pharmacology analysis was conducted to identify the important target proteins in the pathways correlated with the therapeutic effects of topical Sidaxue treatment for RA, and the core target proteins were screened by topological analysis. RESULTS: Treatment with GTW and Sidaxue at the 3 doses all significantly alleviated plantar swelling, lowered arthritis index scores, improved cartilage and bone damage and reduced neovascularization in CIA rats (P<0.05), and the effects of Sidaxue showed a dose dependence. Both GTW and Sidaxue treatments significantly lowered TNF-α, IL-1ß, NF-κB p65, MMP1, MMP2, and MMP9 mRNA and protein expressions in the synovial tissues of CIA rats (P<0.05). Network pharmacological analysis identified MMPs as the core proteins associated with topical Sidaxue treatment of RA. CONCLUSION: Sidaxue alleviates articular bone and cartilage damages and reduces synovial neovascularization in CIA rats possibly by downregulating MMPs via the TNF-α/IL-1ß/NF-κB-MMP1, 2, 9 signaling pathway, and MMPs probably plays a key role in mediating the effect of Sidaxue though the therapeutic pathways other than oral administration.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Drugs, Chinese Herbal , Matrix Metalloproteinase 1 , Rats, Sprague-Dawley , Synovial Membrane , Tumor Necrosis Factor-alpha , Animals , Rats , Arthritis, Rheumatoid/drug therapy , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Matrix Metalloproteinase 1/metabolism , Synovial Membrane/drug effects , Synovial Membrane/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-1beta/metabolism , Matrix Metalloproteinase 2/metabolism , Down-Regulation/drug effects , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinases/metabolism , Tripterygium/chemistry , Transcription Factor RelA/metabolism
6.
PeerJ ; 12: e17360, 2024.
Article in English | MEDLINE | ID: mdl-38737746

ABSTRACT

Breast cancer is the most common invasive neoplasm and the leading cause of cancer death in women worldwide. The main cause of mortality in cancer patients is invasion and metastasis, where the epithelial-mesenchymal transition (EMT) is a crucial player in these processes. Pharmacological therapy has plants as its primary source, including isoflavonoids. Brazilin is an isoflavonoid isolated from Haematoxilum brasiletto that has shown antiproliferative activity in several cancer cell lines. In this study, we evaluated the effect of Brazilin on canonical markers of EMT such as E-cadherin, vimentin, Twist, and matrix metalloproteases (MMPs). By Western blot, we evaluated E-cadherin, vimentin, and Twist expression and the subcellular localization by immunofluorescence. Using gelatin zymography, we determined the levels of secretion of MMPs. We used Transwell chambers coated with matrigel to determine the in vitro invasion of breast cancer cells treated with Brazilin. Interestingly, our results show that Brazilin increases 50% in E-cadherin expression and decreases 50% in vimentin and Twist expression, MMPs, and cell invasion in triple-negative breast cancer (TNBC) MDA-MB-231 and to a lesser extend in MCF7 ER+ breast cancer cells. Together, these findings position Brazilin as a new molecule with great potential for use as complementary or alternative treatment in breast cancer therapy in the future.


Subject(s)
Benzopyrans , Breast Neoplasms , Cadherins , Epithelial-Mesenchymal Transition , Twist-Related Protein 1 , Vimentin , Humans , Epithelial-Mesenchymal Transition/drug effects , Female , Cadherins/metabolism , Vimentin/metabolism , Vimentin/genetics , Cell Line, Tumor , Twist-Related Protein 1/metabolism , Twist-Related Protein 1/genetics , Benzopyrans/pharmacology , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , MCF-7 Cells , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Neoplasm Invasiveness/genetics , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/genetics , Nuclear Proteins
7.
ACS Biomater Sci Eng ; 10(5): 3108-3119, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38659287

ABSTRACT

Persistent foot odor and itchiness are common symptoms of tinea pedis, significantly disrupting the daily life of those affected. The cuticular barrier at the site of the tinea pedis is thickened, which impedes the effective penetration of antifungal agents. Additionally, fungi can migrate from the skin surface to deeper tissues, posing challenges in the current clinical treatment for tinea pedis. To effectively treat tinea pedis, we developed a platform of bilayer gelatin methacrylate (GelMA) microneedles (MNs) loaded with salicylic acid (SA) and FK13-a1 (SA/FK13-a1@GelMA MNs). SA/FK13-a1@GelMA MNs exhibit pH- and matrix metalloproteinase (MMP)-responsive properties for efficient drug delivery. The MNs are designed to deliver salicylic acid (SA) deep into the stratum corneum, softening the cuticle and creating microchannels. This process enables the antibacterial peptide FK13-a1 to penetrate through the stratum corneum barrier, facilitating intradermal diffusion and exerting antifungal and anti-inflammatory effects. In severe cases of tinea pedis, heightened local pH levels and MMP activity further accelerate drug release. Our research demonstrates that SA/FK13-a1@GelMA MNs are highly effective against Trichophyton mentagrophytes, Trichophyton rubrum, and Candida albicans. They also reduced stratum corneum thickness, fungal burden, and inflammation in a guinea pig model of tinea pedis induced by T. mentagrophytes. Furthermore, it was discovered that SA/FK13-a1@GelMA MNs exhibit excellent biocompatibility. These findings suggest that SA/FK13-a1@GelMA MNs have significant potential for the clinical treatment of tinea pedis as well as other fungal skin disorders.


Subject(s)
Antifungal Agents , Needles , Tinea Pedis , Tinea Pedis/drug therapy , Animals , Hydrogen-Ion Concentration , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/administration & dosage , Matrix Metalloproteinases/metabolism , Humans , Drug Delivery Systems/instrumentation , Drug Delivery Systems/methods , Guinea Pigs , Gelatin/chemistry , Methacrylates/chemistry
8.
Proc Natl Acad Sci U S A ; 121(19): e2317307121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683990

ABSTRACT

Directing antibodies to a particular epitope among many possible on a target protein is a significant challenge. Here, we present a simple and general method for epitope-directed selection (EDS) using a differential phage selection strategy. This involves engineering the protein of interest (POI) with the epitope of interest (EOI) mutated using a systematic bioinformatics algorithm to guide the local design of an EOI decoy variant. Using several alternating rounds of negative selection with the EOI decoy variant followed by positive selection on the wild-type POI, we were able to identify highly specific and potent antibodies to five different EOI antigens that bind and functionally block known sites of proteolysis. Among these, we developed highly specific antibodies that target the proteolytic site on the CUB domain containing protein 1 (CDCP1) to prevent its proteolysis allowing us to study the cellular maturation of this event that triggers malignancy. We generated antibodies that recognize the junction between the pro- and catalytic domains for three different matrix metalloproteases (MMPs), MMP1, MMP3, and MMP9, that selectively block activation of each of these enzymes and impair cell migration. We targeted a proteolytic epitope on the cell surface receptor, EPH Receptor A2 (EphA2), that is known to transform it from a tumor suppressor to an oncoprotein. We believe that the EDS method greatly facilitates the generation of antibodies to specific EOIs on a wide range of proteins and enzymes for broad therapeutic and diagnostic applications.


Subject(s)
Epitopes , Epitopes/immunology , Humans , Proteolysis , Protein Binding , Protein Engineering/methods , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/immunology , Antibodies/immunology , Peptide Library
9.
Int J Biol Macromol ; 267(Pt 1): 131492, 2024 May.
Article in English | MEDLINE | ID: mdl-38604418

ABSTRACT

Human heavy chain ferritin (HFn) protein cage has been explored as a nanocarrier for targeted anticancer drug delivery. Here, we introduced a matrix metalloproteinases (MMPs)-cleavable sequence into the DE loop of HFn, creating an MMP-responsive variant, MR-HFn, for localized and extracellular drug release. The crystal structure of MR-HFn revealed that the addition of the MMPs recognition sequence did not affect the self-assembly of HFn but presented a surface-exposed loop susceptible to MMPs cleavage. Biochemical analysis indicated that this engineered protein cage is responsive to MMPs, enabling the targeted release of encapsulated drugs. To evaluate the therapeutic potential of this engineered protein cage, monosubstituted ß-carboxy phthalocyanine zinc (CPZ), a type of photosensitizer, was loaded inside this protein cage. The prepared CPZ@MR-HFn showed higher uptake and stronger phototoxicity in MMPs overexpressed tumor cells, as well as enhanced penetration into multicellular tumor spheroids compared with its counterpart CPZ@HFn in vitro. In vivo, CPZ@MR-HFn displayed a higher tumor inhibitory rate than CPZ@HFn under illumination. These results indicated that MR-HFn is a promising nanocarrier for anticancer drug delivery and the MMP-responsive strategy here can also be adapted for other stimuli.


Subject(s)
Antineoplastic Agents , Drug Liberation , Matrix Metalloproteinases , Protein Engineering , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Matrix Metalloproteinases/metabolism , Animals , Cell Line, Tumor , Mice , Ferritins/chemistry , Ferritins/metabolism , Indoles/chemistry , Indoles/pharmacology , Drug Carriers/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry
10.
Cells ; 13(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38667274

ABSTRACT

Skin ageing is defined, in part, by collagen depletion and fragmentation that leads to a loss of mechanical tension. This is currently believed to reflect, in part, the accumulation of senescent cells. We compared the expression of genes and proteins for components of the extracellular matrix (ECM) as well as their regulators and found that in vitro senescent cells produced more matrix metalloproteinases (MMPs) than proliferating cells from adult and neonatal donors. This was consistent with previous reports of senescent cells contributing to increased matrix degradation with age; however, cells from adult donors proved significantly less capable of producing new collagen than neonatal or senescent cells, and they showed significantly lower myofibroblast activation as determined by the marker α-SMA. Functionally, adult cells also showed slower migration than neonatal cells. We concluded that the increased collagen degradation of aged fibroblasts might reflect senescence, the reduced collagen production likely reflects senescence-independent processes.


Subject(s)
Cellular Senescence , Collagen , Fibroblasts , Skin , Humans , Fibroblasts/metabolism , Skin/metabolism , Skin/cytology , Adult , Collagen/metabolism , Extracellular Matrix/metabolism , Infant, Newborn , Aging/metabolism , Cell Proliferation , Matrix Metalloproteinases/metabolism , Cell Movement , Cells, Cultured , Middle Aged
11.
Cell Mol Life Sci ; 81(1): 195, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38653877

ABSTRACT

The Notch pathway is an evolutionarily conserved signaling system that is intricately regulated at multiple levels and it influences different aspects of development. In an effort to identify novel components involved in Notch signaling and its regulation, we carried out protein interaction screens which identified non-muscle myosin II Zipper (Zip) as an interacting partner of Notch. Physical interaction between Notch and Zip was further validated by co-immunoprecipitation studies. Immunocytochemical analyses revealed that Notch and Zip co-localize within same cytoplasmic compartment. Different alleles of zip also showed strong genetic interactions with Notch pathway components. Downregulation of Zip resulted in wing phenotypes that were reminiscent of Notch loss-of-function phenotypes and a perturbed expression of Notch downstream targets, Cut and Deadpan. Further, synergistic interaction between Notch and Zip resulted in highly ectopic expression of these Notch targets. Activated Notch-induced tumorous phenotype of larval tissues was enhanced by over-expression of Zip. Notch-Zip synergy resulted in the activation of JNK pathway that consequently lead to MMP activation and proliferation. Taken together, our results suggest that Zip may play an important role in regulation of Notch signaling.


Subject(s)
Drosophila Proteins , Membrane Proteins , Myosin Heavy Chains , Receptors, Notch , Signal Transduction , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Receptors, Notch/metabolism , Receptors, Notch/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Wings, Animal/metabolism , Wings, Animal/growth & development , Drosophila/metabolism , Drosophila/genetics , Phenotype , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/genetics , Cell Proliferation , Myosin Type II/metabolism , Myosin Type II/genetics
12.
Sci Rep ; 14(1): 9411, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658579

ABSTRACT

Matrix Metalloproteinases (MMPs) have been demonstrated to be essential in facilitating the migration and metastasis of clear cell renal cell carcinoma (ccRCC). However, the ability of the MMP family to predict clinical outcomes and guide optimal therapeutic strategies for ccRCC patients remains incompletely understood. In this investigation, we initially conducted a thorough examination of the MMP family in pan-cancer. Notably, MMPs exhibited distinctive significance in ccRCC. Following this, we undertook an extensive analysis to evaluate the clinical value of MMPs and potential mechanisms by which MMPs contribute to the progression of ccRCC. A novel stratification method and prognostic model were developed based on MMPs in order to enhance the accuracy of prognosis prediction for ccRCC patients and facilitate personalized treatment. By conducting multi-omics analysis and transcriptional regulation analysis, it was hypothesized that SAA1 plays a crucial role in promoting ccRCC migration through MMPs. Subsequently, in vitro experiments confirmed that SAA1 regulates ccRCC cell migration via the ERK-AP1-MMPs axis. In conclusion, our study has explored the potential value of the MMP family as prognostic markers for ccRCC and as guides for medication regimens. Additionally, we have identified SAA1 as a crucial factor in the migration of ccRCC.


Subject(s)
Carcinoma, Renal Cell , Cell Movement , Kidney Neoplasms , Matrix Metalloproteinases , Serum Amyloid A Protein , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Humans , Cell Movement/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/genetics , Prognosis , Cell Line, Tumor , Serum Amyloid A Protein/metabolism , Serum Amyloid A Protein/genetics , Gene Expression Regulation, Neoplastic , MAP Kinase Signaling System , Female , Extracellular Signal-Regulated MAP Kinases/metabolism , Male , Signal Transduction
13.
Biomater Adv ; 160: 213853, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636119

ABSTRACT

Patients with rheumatoid arthritis (RA) often have one or more painfuljoints despite adequate medicine. Local drug delivery to the synovial cavity bids for high drug concentration with minimal systemic adverse effects. However, anti-RA drugs show short half-lives in inflamed joints after intra-articular delivery. To improve the therapeutic efficacy, it is essential to ensure that a drug is only released from the formulation when it is needed. In this work, we developed an intelligent "Self-actuating" drug delivery system where Disease-modifying anti-rheumatic Drug (DMARD) methotrexate is incorporated within a matrix intended to be injected directly into joints. This formulation has the property to sense the need and release medication only when joints are inflamed in response to inflammatory enzyme Matrix metalloproteinases (MMP). These enzymes are important proteases in RA pathology, and several MMP are present in augmented levels in synovial fluid and tissues. A high level of MMP present in synovial tissues of RA patients would facilitate the release of drugs in response and ascertain controlled drug release. The formulation is designed to be stable within the joint environment, but to dis-assemble in response to inflammation. The synthesized enzyme-responsive methotrexate (Mtx) encapsulated micron-sized polymer-lipid hybrid hydrogel microspheres (Mtx-PLHM) was physiochemically characterized and tested in synovial fluid, Human Fibroblast like synoviocytes (h-FLS) (derived from RA patients) and a rat arthritic animal model. Mtx-PLHM can self-actuate and augment the release of Mtx drug upon contact with either exogenously added MMP or endogenous MMP present in the synovial fluid of patients with RA. The drug release from the prepared formulation is significantly amplified to several folds in the presence of MMP-2 and MMP-9 enzymes. In the rat arthritic model, Mtx-PLHM showed promising therapeutic results with the significant alleviation of RA symptoms through decrease in joint inflammation, swelling, bone erosion, and joint damage examined by X-ray analysis, histopathology and immune-histology. This drug delivery system would be nontoxic as it releases more drug only during the period of exacerbation of inflammation. This will simultaneously protect patients from unwanted side effects when the disease is inactive and lower the need for repeated joint injections.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Delayed-Action Preparations , Hydrogels , Methotrexate , Microspheres , Synoviocytes , Animals , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Humans , Methotrexate/pharmacology , Methotrexate/therapeutic use , Methotrexate/chemistry , Methotrexate/administration & dosage , Hydrogels/chemistry , Synoviocytes/drug effects , Synoviocytes/metabolism , Synoviocytes/pathology , Rats , Antirheumatic Agents/pharmacology , Antirheumatic Agents/administration & dosage , Antirheumatic Agents/therapeutic use , Antirheumatic Agents/pharmacokinetics , Drug Liberation , Fibroblasts/drug effects , Fibroblasts/metabolism , Male , Inflammation/drug therapy , Inflammation/pathology , Matrix Metalloproteinases/metabolism , Synovial Fluid/drug effects , Synovial Fluid/metabolism
14.
BMC Oral Health ; 24(1): 382, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528501

ABSTRACT

AIMS AND OBJECTIVES: To analyze anti-MMP mode of action of Quaternary Ammonium Silane (QAS, codenamed as k21) by binding onto specific MMP site using computational molecular simulation and Anti-Sortase A (SrtA) mode of action by binding onto specific site using computational molecular simulation. MATERIALS AND METHODS: In silico Molecular Dynamics (MD) was used to determine the interactions of K21 inside the pocket of the targeted protein (crystal structure of fibroblast collagenase-1 complexed to a diphenyl-ether sulphone based hydroxamic acid; PDB ID: 966C; Crystal structure of MMP-2 active site mutant in complex with APP-derived decapeptide inhibitor. MD simulations were accomplished with the Desmond package in Schrödinger Drug Discovery Suite. Blood samples (~ 0.5 mL) collected into K2EDTA were immediately transferred for further processing using the Litron MicroFlow® PLUS micronucleus analysis kit for mouse blood according to the manufacturer's instructions. Bacterial Reverse Mutation Test of K21 Molecule was performed to evaluate K21 and any possible metabolites for their potential to induce point mutations in amino acid-requiring strains of Escherichia coli (E. coli) (WP2 uvrA (tryptophan-deficient)). RESULTS: Molecular Simulation depicted that K21 has a specific pocket binding on various MMPs and SrtA surfaces producing a classical clouting effect. K21 did not induce micronuclei, which are the result of chromosomal damage or damage to the mitotic apparatus, in the peripheral blood reticulocytes of male and female CD-1 mice when administered by oral gavage up to the maximum recommended dose of 2000 mg/kg. The test item, K21, was not mutagenic to Salmonella typhimurium (S. typhimurium) strains TA98, TA100, TA1535 and TA1537 and E. coli strain WP2 uvrA in the absence and presence of metabolic activation when tested up to the limit of cytotoxicity or solubility under the conditions of the test. CONCLUSION: K21 could serve as a potent protease inhibitor maintaining the physical and biochemical properties of dental structures.


Subject(s)
Ammonium Compounds , Mice , Male , Female , Animals , Mutagenicity Tests , Ammonium Compounds/pharmacology , Escherichia coli , Mutagens/pharmacology , Matrix Metalloproteinases
15.
Am J Physiol Cell Physiol ; 326(5): C1293-C1307, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38525543

ABSTRACT

Given the widespread application of glucocorticoids in ophthalmology, the associated elevation of intraocular pressure (IOP) has long been a vexing concern for clinicians, yet the underlying mechanisms remain inconclusive. Much of the discussion focuses on the extracellular matrix (ECM) of trabecular meshwork (TM). It is widely agreed that glucocorticoids impact the expression of matrix metalloproteinases (MMPs), leading to ECM deposition. Since Zn2+ is vital for MMPs, we explored its role in ECM alterations induced by dexamethasone (DEX). Our study revealed that in human TM cells treated with DEX, the level of intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. This correlated with changes in several Zrt-, Irt-related proteins (ZIPs) and metallothionein. ZIP8 knockdown impaired extracellular Zn2+ uptake, but Zn2+ chelation did not affect ZIP8 expression. Resembling DEX's effects, chelation of Zn2+ decreased MMP2 expression, increased the deposition of ECM proteins, and induced structural disarray of ECM. Conversely, supplementation of exogenous Zn2+ in DEX-treated cells ameliorated these outcomes. Notably, dietary zinc supplementation in mice significantly reduced DEX-induced IOP elevation and collagen content in TM, thereby rescuing the visual function of the mice. These findings underscore zinc's pivotal role in ECM regulation, providing a novel perspective on the pathogenesis of glaucoma.NEW & NOTEWORTHY Our study explores zinc's pivotal role in mitigating extracellular matrix dysregulation in the trabecular meshwork and glucocorticoid-induced ocular hypertension. We found that in human trabecular meshwork cells treated with dexamethasone, intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. Zinc supplementation rescues visual function by modulating extracellular matrix proteins and lowering intraocular pressure, offering a direction for further exploration in glaucoma management.


Subject(s)
Glaucoma , Trabecular Meshwork , Mice , Humans , Animals , Trabecular Meshwork/metabolism , Dexamethasone/pharmacology , Glucocorticoids/pharmacology , Glaucoma/pathology , Intraocular Pressure , Extracellular Matrix Proteins/metabolism , Extracellular Matrix/metabolism , Matrix Metalloproteinases/metabolism , Zinc/metabolism , Cells, Cultured
16.
Arch Oral Biol ; 162: 105942, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38452415

ABSTRACT

OBJECTIVES: The aim of this scoping review was to evaluate the available scientific evidence regarding the use of flavonoids in the treatment of caries-affected dentin focusing on bonding to dentin. METHODS: A comprehensive literature search was performed in five databases from March 2022 and updated in April 2023: PubMed, EMBASE, Scopus, Web of Science, and Scielo. Additionally, the references of included studies were manually searched. Gray literature was excluded from the review. STUDY SELECTION: Inclusion criteria included in vitro, in situ, and in vivo studies (animal or human) published in English. Abstracts, reviews, case reports, book chapters, doctoral dissertations, guidelines, and studies using pure plant extracts were excluded. Data collected from the selected studies were summarized and subjected to narrative and descriptive analysis. Out of the 91 studies identified, only 16 studies met the inclusion criteria. RESULTS: The review analyzed eight different flavonoids (hesperidin, galardin, proanthocyanidin, genipin, quercetin, naringin, epigallocatechin-3-gallate, and other catechins subtypes) used as pretreatment or loaded into adhesive systems, primers, and phosphoric acid. The use of flavonoids improved the mechanical properties of the materials and modified the biological properties of the dentin, reducing collagen loss by the inhibition of proteolytic activity of matrix metalloproteinases (MMPs). CONCLUSIONS: Based on the findings of this scoping review, it can be concluded that the use of flavonoids as pretreatment or incorporation into dental materials preserves collagen in the hybrid layer, inhibiting the MMPs activities, modifying the collagen fibrils of the dentin matrix and improving the mechanical properties of the dental adhesive systems. Therefore, it represents a promising approach for promoting dentin biomodification. This can result in more stable bonding of adhesive restorations to caries-affected dentin.


Subject(s)
Dental Bonding , Dental Caries , Humans , Flavonoids/pharmacology , Dental Caries Susceptibility , Collagen , Dental Caries/drug therapy , Matrix Metalloproteinases , Dentin , Dentin-Bonding Agents , Materials Testing , Resin Cements , Tensile Strength
17.
Anal Chem ; 96(10): 4180-4189, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38436249

ABSTRACT

Inflammation has been confirmed to be closely related to the development of tumors, while peroxynitrite (ONOO-) is one of the most powerful oxidative pro-inflammatory factors. Although ONOO- can kill bacteria through oxidation, it will activate matrix metalloproteinases (MMPs), accelerate the degradation of the extracellular matrix (ECM), and subsequently lead to the activation and release of other tumor promotion factors existing in the ECM, promoting tumor metastasis and invasion. Herein, we report a simple aggregation-induced emission (AIE) nanoprobe (NP), TPE-4NMB, that can simultaneously visualize and deplete ONOO-. The probe can light up the endogenous and exogenous ONOO- in cells and selectively inhibit the proliferation and migration of 4T1 cells by inducing an intracellular redox homeostasis imbalance through ONOO- depletion. After being modified with DSPE-PEG2000, the TPE-4NMB NPs can be used to image ONOO- induced by various models in vivo; especially, it can monitor the dynamic changes of ONOO- level in the residual tumor after surgery, which can provide evidence for clarifying the association between surgery, ONOO-, and cancer metastasis. Excitingly, inhibited tumor volume growth and decreased counts of lung metastases were observed in the TPE-4NMB NPs group, which can be attributed to the downregulated expression of MMP-9 and transforming growth factor-ß (TGF-ß), increased cell apoptosis, and inhibited epithelial-mesenchymal transition (EMT) mediated by ONOO-. The results will provide new evidence for clarifying the relationship between surgery, ONOO-, and tumor metastasis and serve as a new intervention strategy for preventing tumor metastasis after tumor resection.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Humans , Female , Peroxynitrous Acid , Lung Neoplasms/prevention & control , Transforming Growth Factor beta , Matrix Metalloproteinases/metabolism , Fluorescent Dyes
18.
BMC Neurosci ; 25(1): 13, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438999

ABSTRACT

The objectives of the present study was to investigate the effects of resistance training (RT) on serum levels of controlling blood-brain barrier (BBB) permeability indices and cognitive performance in MS women (MS-W). In this randomized control trail study (IRCT registration code: IRCT20120912010824N3, 07.09.2023), twenty-five MS-W were randomly divided into sedentary (MS) and resistance exercise (12 weeks/3 times per week/ 60-80% of 1RM) (MS + RT) groups. Fifteen healthy aged-matched women participated as a control group (HCON). The serum level of matrix metalloproteinase-2 (MMP-2), matrix metallopeptidase-9 (MMP-9), tissue metalloproteinase inhibitors-1 (TIMP-1), tissue metalloproteinase inhibitors-2 (TIMP-2), and S100 calcium-binding protein B (S100B) were assessed. In addition, cognitive performance was assessed pre- and post- intervention with the Brief International Cognitive Assessment for MS (BICAMS). A significant reduction in MMP-2, TIMP-2 serum levels, and MMP-2/TIMP-2 ratio were observed in post-test for MS + RT group (p < 0.01) in comparison to the HCON and MS groups; however, no changes were observed in MMP-9, TIMP-1, S100B and MMP-9/TIMP-1 ratio after RT (p > 0.05). The verbal learning was improved in post-test for MS + RT group (p < 0.01), although no change were observed for visuospatial memory and information processing speed (p > 0.05). These findings suggest that resistance training can modify some indices of BBB permeability and improve verbal learning in MS-W. The findings may also be beneficial as a non-pharmacological intervention to reduce inflammation.


Subject(s)
Multiple Sclerosis , Resistance Training , Humans , Female , Aged , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Multiple Sclerosis/therapy , Tissue Inhibitor of Metalloproteinase-1 , Tissue Inhibitor of Metalloproteinase-2 , Matrix Metalloproteinases
19.
Nat Commun ; 15(1): 2038, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448448

ABSTRACT

Hypertrophic scar (HS) considerably affects the appearance and causes tissue dysfunction in patients. The low bioavailability of 5-fluorouracil poses a challenge for HS treatment. Here we show a separating microneedle (MN) consisting of photo-crosslinked GelMA and 5-FuA-Pep-MA prodrug in response to high reactive oxygen species (ROS) levels and overexpression of matrix metalloproteinases (MMPs) in the HS pathological microenvironment. In vivo experiments in female mice demonstrate that the retention of MN tips in the tissue provides a slowly sustained drug release manner. Importantly, drug-loaded MNs could remodel the pathological microenvironment of female rabbit ear HS tissues by ROS scavenging and MMPs consumption. Bulk and single cell RNA sequencing analyses confirm that drug-loaded MNs could reverse skin fibrosis through down-regulation of BCL-2-associated death promoter (BAD), insulin-like growth factor 1 receptor (IGF1R) pathways, simultaneously regulate inflammatory response and keratinocyte differentiation via up-regulation of toll-like receptors (TOLL), interleukin-1 receptor (IL1R) and keratinocyte pathways, and promote the interactions between fibroblasts and keratinocytes via ligand-receptor pair of proteoglycans 2 (HSPG2)-dystroglycan 1(DAG1). This study reveals the potential therapeutic mechanism of drug-loaded MNs in HS treatment and presents a broad prospect for clinical application.


Subject(s)
Cicatrix, Hypertrophic , Humans , Animals , Female , Mice , Rabbits , Cicatrix, Hypertrophic/drug therapy , Reactive Oxygen Species , Biological Availability , Cell Differentiation , Matrix Metalloproteinases
20.
Int J Mol Sci ; 25(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38474009

ABSTRACT

The extracellular matrix (ECM) is a complex non-cellular three-dimensional macromolecular network present within all tissues and organs, forming the foundation on which cells sit, and composed of proteins (such as collagen), glycosaminoglycans, proteoglycans, minerals, and water. The ECM provides a fundamental framework for the cellular constituents of tissue and biochemical support to surrounding cells. The ECM is a highly dynamic structure that is constantly being remodeled. Matrix metalloproteinases (MMPs) are among the most important proteolytic enzymes of the ECM and are capable of degrading all ECM molecules. MMPs play a relevant role in physiological as well as pathological processes; MMPs participate in embryogenesis, morphogenesis, wound healing, and tissue remodeling, and therefore, their impaired activity may result in several problems. MMP activity is also associated with chronic inflammation, tissue breakdown, fibrosis, and cancer invasion and metastasis. The periodontium is a unique anatomical site, composed of a variety of connective tissues, created by the ECM. During periodontitis, a chronic inflammation affecting the periodontium, increased presence and activity of MMPs is observed, resulting in irreversible losses of periodontal tissues. MMP expression and activity may be controlled in various ways, one of which is the inhibition of their activity by an endogenous group of tissue inhibitors of metalloproteinases (TIMPs), as well as reversion-inducing cysteine-rich protein with Kazal motifs (RECK).


Subject(s)
Matrix Metalloproteinases , Periodontitis , Humans , Matrix Metalloproteinases/metabolism , Periodontitis/metabolism , Periodontium/metabolism , Extracellular Matrix/metabolism , Collagen/metabolism , Inflammation/metabolism , Tissue Inhibitor of Metalloproteinases/metabolism , GPI-Linked Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...